O BLUE MISSION BANOS

Funded by the European Union Supporting the Mission Ocean Lighthouse in the North and Baltic Sea

Ports as energy innovation hubs

Ports as energy innovation hubs

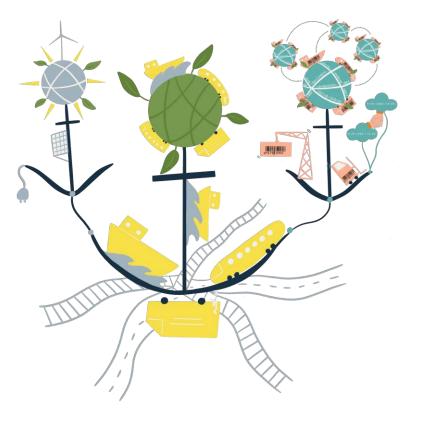
Exploring practical avenues on how to further innovate ports as energy hubs responding to societal needs utilizing the symbiosis of collaboration and enabling technologies. The aim is to seek large engagement from the audience in an informal setting as a catalyst for ideating novel collaboration opportunities.

09:00 - 09:05	Gathering and welcome, Martin Sjöberg, IVL and Mikael Lind, RISE					
09:05 - 09:20	Ports as energy hubs for sustainable ports, Mikael Lind, RISE					
09:20-09:30	Blue Supply Chains – ports as intermediary hubs in green corridors enabling a sustainable					
	transport ecosystem, Linda Styhre, IVL					
09:30 - 09:40	Ports and terminals in transition and focal point for distribution of sustainable energy, Karl					
	Jivén, IVL					
09:40 - 09:45	Workshop introduction – setup and areas to discuss					
09:45 - 10:10	Round table discussions addressing the following questions:					
	 The role of the ports in tomorrow's new energy landscape? 					
	How can ports in the Baltic Sea act to respond to the needs of the transport					
	sector? What new innovations, collaborative models or other changes are					
	needed?					
10:10 - 10:25	Presentations from each table and joint reflections					
10:25 - 10:30	Closing remarks – positioning ports in the larger end to end flow					

Ports as energy hubs for Sustainable Ports

 a part and enabler of sustainable transport ecosystems

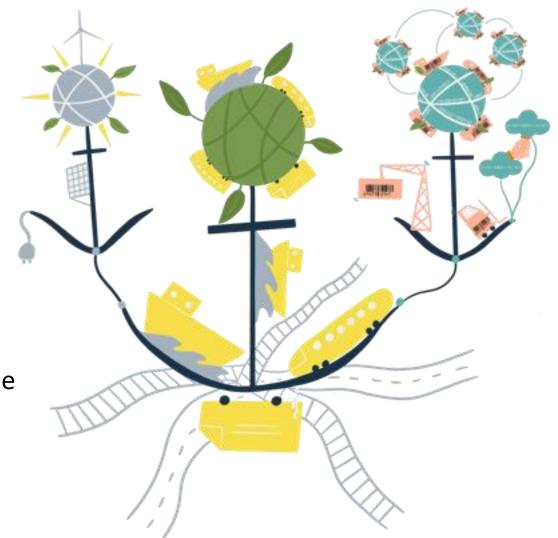
Mikael Lind


Research Institutes of Sweden Chalmers University of Technology

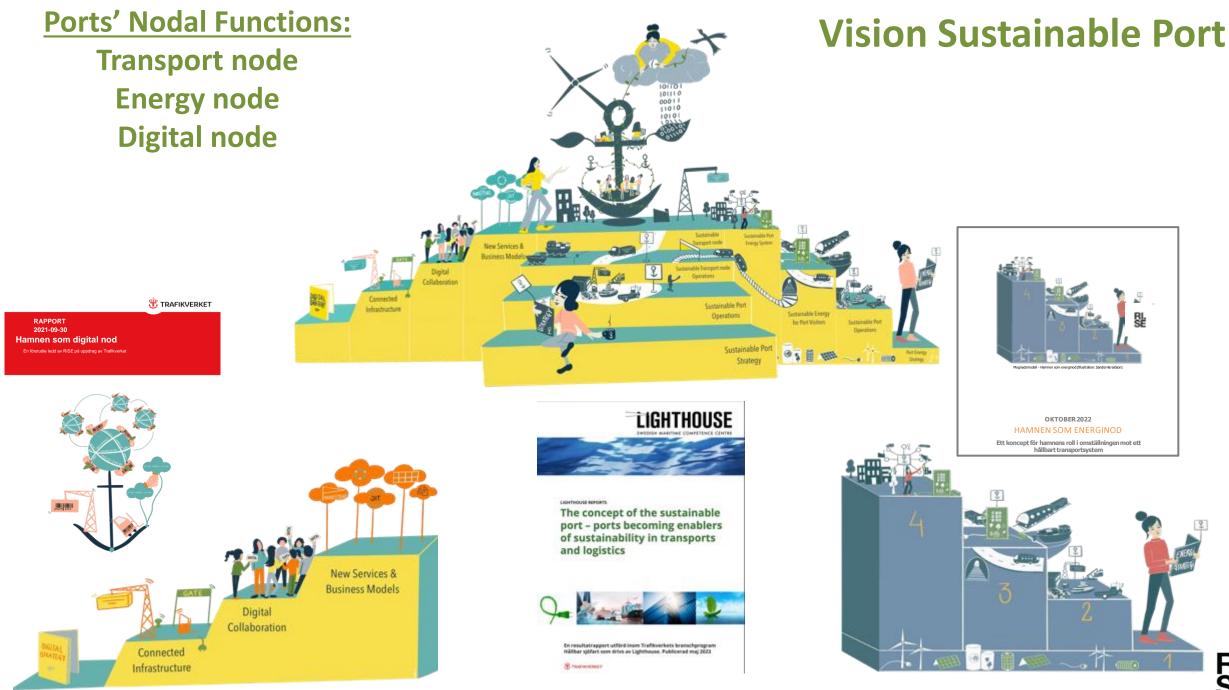
RI. Se

Vision: The Sustainable Port

The sustainable port is a **transport and logistics node** that by enhancing and leveraging its human and financial capabilities and using its role as an **energy and digital/information node** generates value for its customers, owners, employees and the wider society while prioritizing environmental, social, and economic sustainability in its operations. The port is run on commercial foundations and as a transport node the port contributes to sustainable use of the transport system by being an integrated part of global, regional and local transport systems where different modes of transports are included and interact.



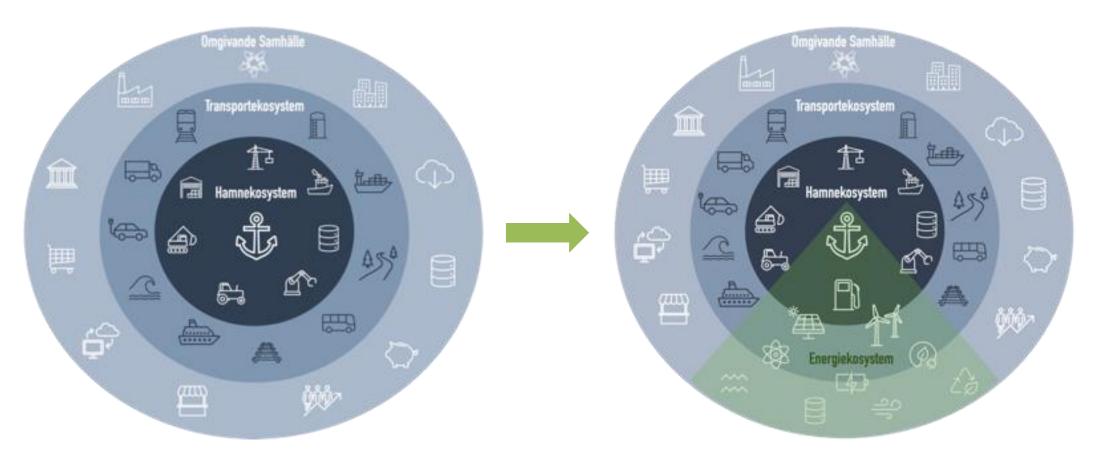
RI. SE


The Sustainable Port

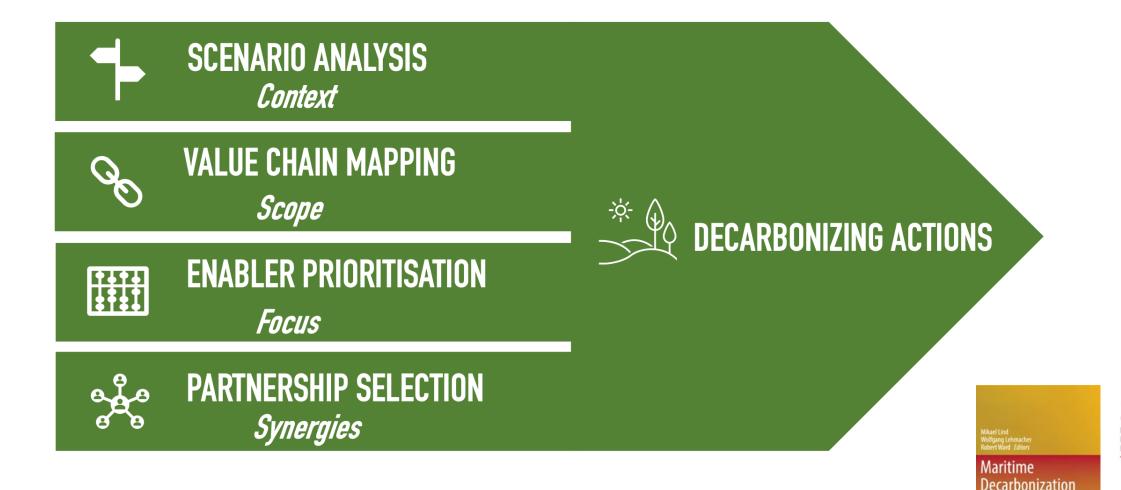
with capabilities as a transport node, an energy node and a digital node

- Window to all modes of transport
- Services for the port's stakeholders
- Consumer and supplier of sustainable energy for the sustainable transport system
- Consumer and producer of information
- Enabler for the transition towards a sustainable transport system

RI. SE



RI. Se


Towards Sustainable Port ecosystem

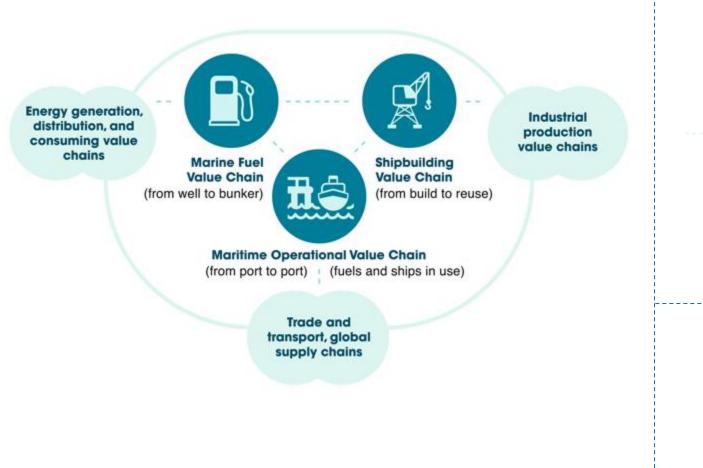
The traditional port in the ecosystem

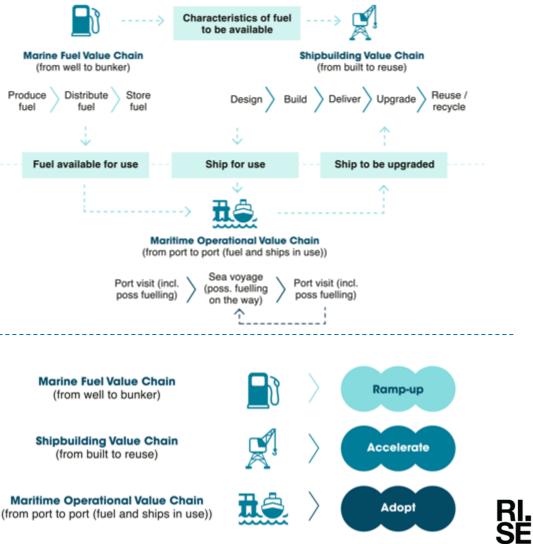
... with energy node capabilities

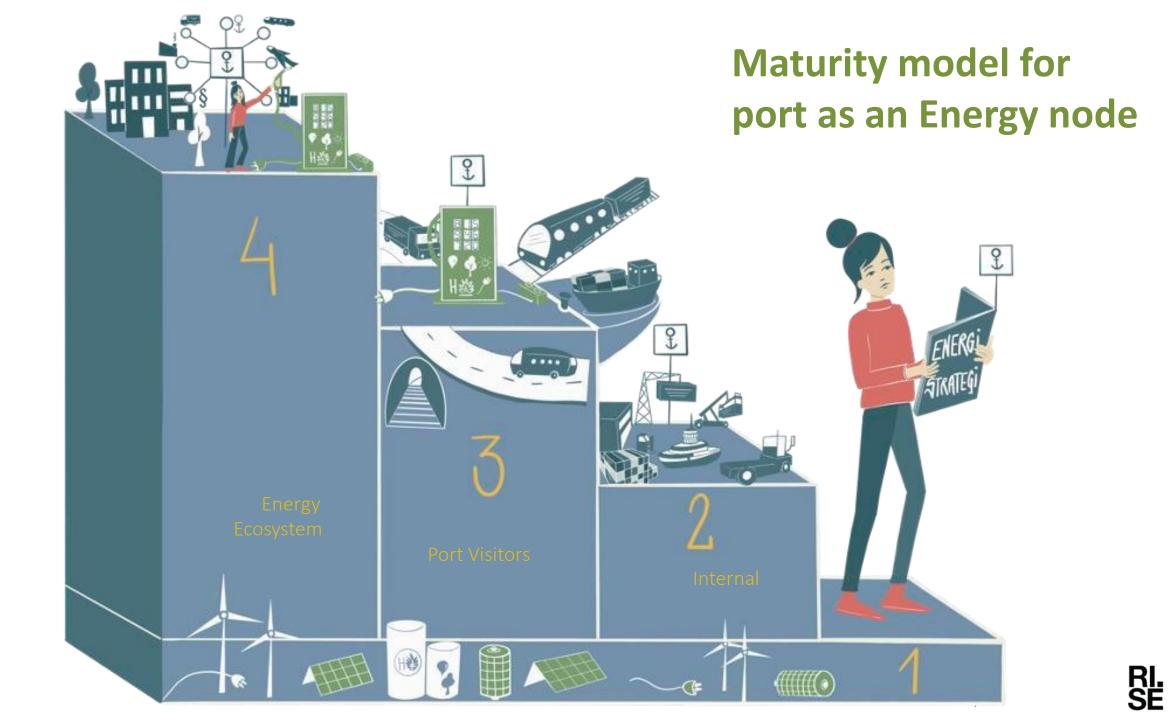
Enabling Maritime Decarbonization

The Maritime Executive

Four Steps Towards Maritime Decarbonizing Actions: Playbook Part 5




en


Country Sandai Haraban PUBLISHED BECH, 2022 PS3 PM BY **MKAEL LIND ET AL.** [By Mikeal Lind, Wolfgang Lemacher, Jenemy Bentham, Sanjay Kuttan, Kiral Tak and Richard T. Watson!

Foundational viewpoint: Interdependent value chains

For different modes of transports ...

<u>Trucking industry</u> Very large emitter of GHG

Dependent on affordable clean technologies and trucks

Train industry

Often seen as green

Many countries use diesel trains

Shipping industry

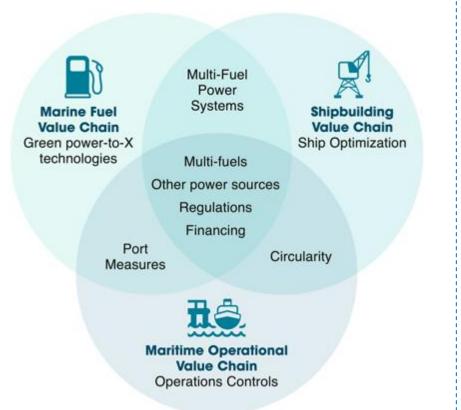
Often seen as a more sustainable mode

Dirty fuel in use

RI. Se

Clean sustainable fuel (incl. electricity needs and sources), powering infrastructure, green corridors, enhanced capabilities of transport nodes, multi-fuel engines

<u>The need</u>


Enhanced transparency, objectivization, and clear transformation maps

Governmental directions and support

Managing the competition of the supply of energy

Supply chain visibility solutions for enhanced performance and tools for ecosystem collaboration

Decarbonization enablers across interdependent value chains

- Port measures
- Fuel storage / Fuelling equipment for sustainable alternative fuels + incentives
- On-shore power supply
- Lower levy for greener ships

Multi-fuels

- LNG
- Green LNG / LBG
- Biodiesel
- Green methanol
- Green ammonia
- Green hydrogen

Other power sources

- · Green electricity
- Nuclear
- Wind
- Solar

Green power-to-X technologies

Multi-fuel power systems

Batteries powered motors
 Upgradability / Retrofitting

Multi-fuel ICE engines /

onboard storages

Fuel cell technology

- Electrolysis solutions for green fuels from renewable electricity
- Technologies to produce green fuels from waste / carbon

Operations controls

- JIT Port Calls
- Advanced weather routing
- Commercial contracts
- Slot Management
- Speed Optimisation
 GHG emissions
- calculation

CO2

reduction

for green

shipping

- contracts . Wind Support
 - t

 Hydrodynamics

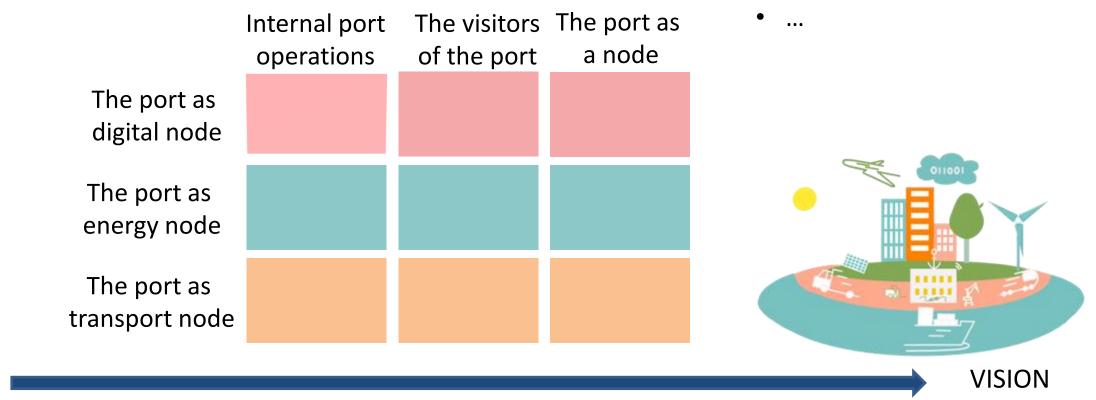
 Ship size
- ns optimisation
- ion
- Fleet renewal
- · Autonomous ships

Ship optimisation

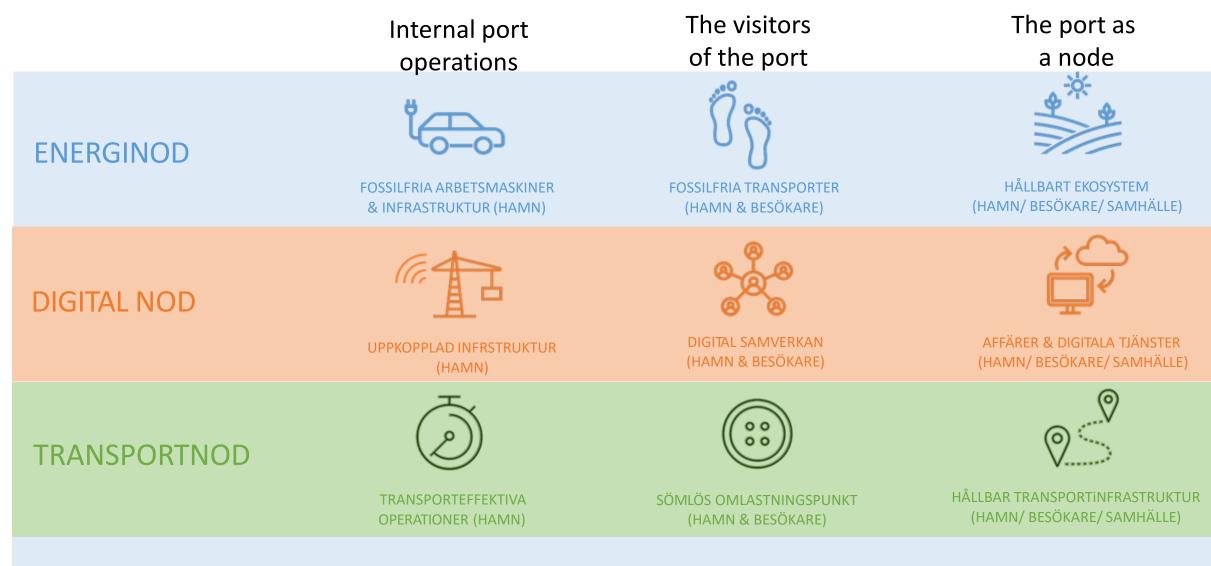
Circularity

- Recyclable ships of recyclable material
- Carbon capture and storage (CCS) on ship level
- Battery processes and management

Financing


- Incentives for green fuel production
- Incentives for green shipbuilding
- Green innovation / R&D funds
- Regulations
 - Market based measures (MBM)
 ETS and levy
 - EEDI/EEXI/CII
- · On-shore Power Supply Usage
- Gradual reduction of GHG content in fuel
- Raw materials regulations

Framework for Roadmap: Sustainable Ports


Dimensions:

- Legal requirements
- Owner requirements
- Customer requirements
- Societal expectations
- New business models

Goal Sustainable Port

ORGANISATION

Karl Jivén & Linda Styrhe

Swedish Environmental Institute, IVL

Funded by the European Union under Grant Agreement ID 101093845. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held responsible for them.

Blue Supply Chains – ports as intermediary hubs in green corridors enabling a sustainable transport ecosystem

Linda Styhre

Ports as energy innovation hubs

Researcher, IVL Swedish Environmental Research Institute

Ports and terminals in transition and focal point for distribution of sustainable energy Karl Jivén

Researcher, IVL Swedish Environmental Research Institute

Ports as energy innovation hubs

Blue Supply Chains – ports as intermediary hubs in green corridors enabling a sustainable transport ecosystem

Linda Styhre

Researcher, IVL Swedish Environmental Research Institute

Green Ports fostering zero-emissions in BLUE SUPPLY CHAINS

#BlueSupplyChains

Dr Linda Styhre

IVL Swedish Environmental Research Institute

linda.styhre@ivl.se

Co-funded by the European Union

Blue Supply Chains

Key Facts – Blue Supply Chains Project (BSC)

0	Duration:	01/2023 - 12/2025
0	Budget:	4.6 Mio. EUR
0	Lead Partner:	Port of Hamburg Marketing

• Co-Funded by:

- Interreg Baltic Sea Region Programme
- Programme Priority:
- 2. Water-smart societies
- Programme objective: 2.2 Blue economy
- o 20 Project Partners from eight BSR countries
- 16 Associated Organisations supporting projects' implementation

#BlueSupplyChains

Blue Supply Chains

Ο

Project Partners & Associated Organisations

The Swedish Case: Introducing green energy supply roadmaps

Fostering Port Authorities' role in green energy supply for transport chains

Green bunkering and charging strategy for ports

- Present and future situation for bunkering of maritime vessels in Sweden and what is lacking related to charging/bunkering of fossil free fuels and local production
- Future demand and supply of alternative fuels and charging facilities
- Identification of appropriate fuels for the different market segments
- Analysis of policy instruments within the next 5 years that are expected to increase the uptake of renewable and low-carbon fuels

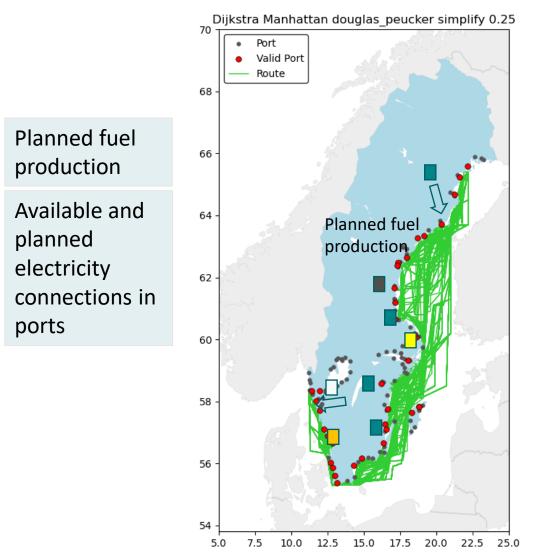
Feasibility study (Umeå Region) - local green hydrogen in port areas

- Investigation of possibilities to introduce hydrogen as a maritime fuel in the Umeå Region
- Feasibility study of a green hydrogen market
- Green hydrogen production (technological aspects, synergies with existing infrastructure, approaches of power grid connections
- Cost/Benefit Analysis

BLUE ECONOMY Blue Supply Chains

Blue Supply Chains

Altogether create possible scenario for green charging and bunkering


- → How will the **demand side** for alternative fuels look like in different part of Sweden and develop over time?
- → How will the **supply side**, incl. production system and charging facilities, look like and what is needed?

Investigation of demand and supply of green bunker and charging in ports

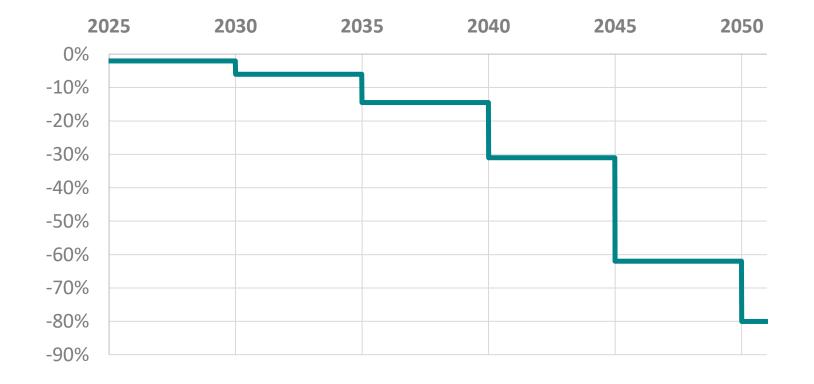
Maritime				Dia		pply (2110	
ves	sel data			Ship Search Shi	p Details WatchL	Lists & Alerts		
+ -	1 of 1 result			Watch 🔻	Map View Correc	tion Relationships	Print	Expo
her & Registration	Ship Detail							
ety & Certification Istruction Dimensions Immensions onnages go & Capacities	IMÖ/LR No. 9125944 Call Sign SEAN MMSI No. 265410000 Flag Sweden)) e Scandinavia AB ()	Shiptype Gross Deadweight Year of Build Status Shipbuilder	Passenger/Ro-Ro 29,691 6,559 1996 In Service/Commi van der Giessen-I		I)	Sten	D a Line
hinery verview	_							
uxiliary Engines			Sum of ton	Sum of Fuel				
uxiliary Generators	Port	Row Lab →↓	CO2 total [ton]		Share Acc	umulated O	order	0403119 1249369
oilers unkers	Goteborg	SEGOT	1 102 731	4 018 213	23%	23%	1	1249369
rime Mover	Stockholm	SESTO	535 870	1 931 608	11%	34%	2	1249369 5375034
hrusters	Trelleborg	SETRG	365 918	1 333 860	8%	42%	3	1249369
eline	Nynashamn (ports)	SENYN	361 537	1 148 149	7%	48%	4	_
	Brofjorden	SEBRO	259 407	936 653	5%	54%	5	
	Malmo	SEMMA	257 022	933 607	5%	59%	6	
	Karlskrona	SEKAA	173 133	632 817	4%	63%	7	
	Karlshamn	SEKAN	123 327	447 320	3%	65%	8	
	Helsingborg	SEHEL	122 556	449 371	3%	68%	9	
	Kappelskar	SEKPS	115 695	420 901	2%	70%	10	
	Ystad	SEYST	113 339	415 347	2%	72%	11	
	Norrkoping	SENRK	110 443	404 010	2%	75%	12	
	Lulea	SELLA	104 288	379 858	2%	77%	13	
	Gavle	SEGVX	103 528	377 898	2%	79%	14	
	Visby	SEVBY	95 421	349 347	2%	81%	15	
	Stenungsund (Ports)	SESTE	91 377	328 038	2%	83%	16	
	Sundsvall	SESDL	79 500	288 720	2%	85%	17	
	Uddeva						18	
	Husum Haraho	gy and	d emissi	ion calo	culati	ons	19 20	
	Wallhamn	SEWAL	55 311	201 117	1%	90%	21	
	Sodertalje	SESOE	53 823	196 537	1%	91%	22	

BLUE ECONOMY Blue Supply Chains

Altogether create possible scenario for green charging and bunkering

- → How will the **demand side** for alternative fuels look like in different part of Sweden and develop over time?
- → How will the **supply side**, incl. production system and charging facilities, look like and what is needed?
- → How can a methodology for green bunkering and charging strategy be develop and describe?
- How can actors in Umeå work together to develop a regional green energy supply concept for the port of Umeå?

Ports as energy innovation hubs


Ports and terminals in transition and focal point for distribution of sustainable energy

Karl Jivén

Researcher, IVL Swedish Environmental Research Institute

Development of the greenhouse gas intensity in the fuel relative to 2020 in accordance with EUFuel Maritime

Renewable fuels and propulsion for ships

Hydrogen	Electricity/Batteries	Wind	Efficiency		
HVO	Methanol	Biogas/LBM	Ammonia		
 Requires no specific 	 Tested in marine applications 	 Good climate performance 	 Does not contain carbon 		
 adaptation Does not improve emissions of NOX 	 Planned production in Sweden Output of the second sec	 Does not require specific adaptation in LNG vessels 	 Strongly toxic 		
and PMDependence on imports					
			Divi		

Swedish Environmenta

Research Institute

PUBLICATION

FDOS 28:2022

CAN LNG BE REPLACED WITH LIQUID BIO-METHANE (LBM) IN SHIPPING?

January 2022

Karl Jivén¹, Anders Hjort¹, Elin Malmgren², Emelie Persson¹, Selma Brynolf², Tomas Lönnqvist¹, Mirjam Särnbratt¹ and Anna Mellin¹

¹ IVL Swedish Environmental Research Institute

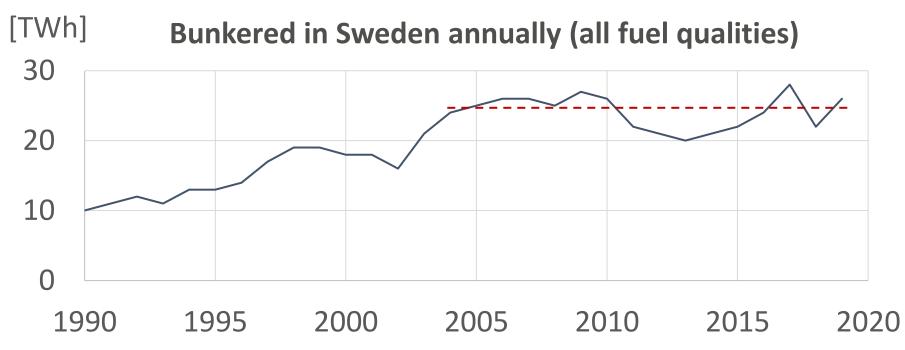
² Chalmers University of Technology

A project within

RENEWABLE TRANSPORTATION FUELS AND SYSTEMS 2018-2021

A collaborative research program between the Swedish Energy Agency and f3 The Swedish Knowledge Centre for Renewable Transportation Fuels

www.energimyndigheten.se


EISH KNOWLEDGE CENTRE E TRANSPORTATION FUELS www.f3centre.se

Can LNG be replaced with Liquid bio methane (LBM) in shipping?


	Bio-methane production potential 2030 (TWh/year)	Bio-methane production potential 2045 Bio-metan (TWh/year)	Restrictions regarding technical, economical and sustainability regard
Biogas (anaerobic digestion)	14	19	Only substrates originating from manure, organic residues, straw and biomass from ecological focus areas and fallow land are included.
Methanation of CO ₂ from anaerobic digestion plants	4.7	6.4	CO ₂ rom biogas plants is used to produce electromethane
Methanation of syngas from gasification plants	3.5	3.5	Only syngas from gasification from residues of lignocellulosic material (e.g., demolitions and package material including pallets) is included.
TOTAL	22.2 Swe	28.9	
IVL CAN LNG BE REPLACED WITH LBM IN SHIPF	bio	tial for inable gas uction	Swedish Environmental Research Institute

... expected cost development for marine fuels

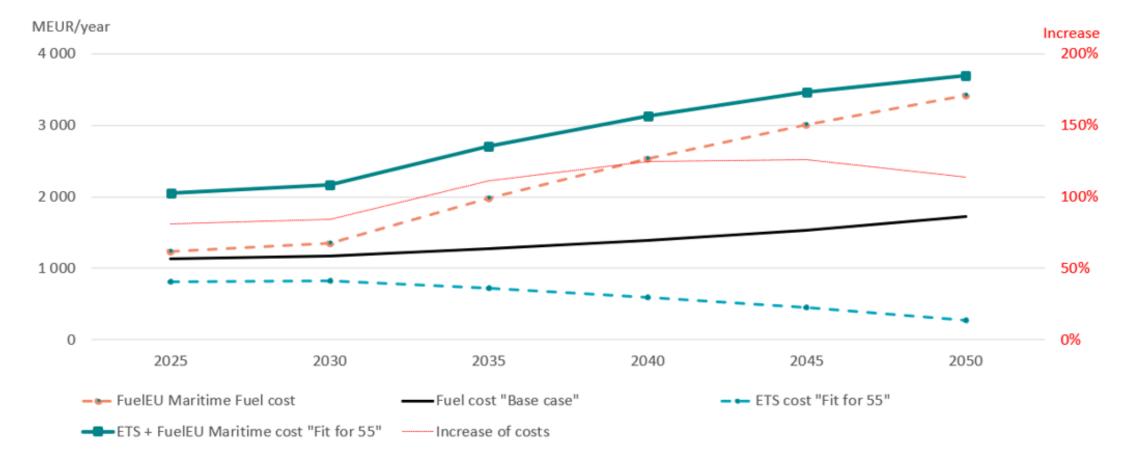


Figure 21. Scenario based on the implementation of FuelEU Maritime and the ETS which will require an increased share of alternative bunker fuels within the European shipping over time as one of the proposed measures within the Fit for 55 packages. With the assumptions that total energy consumption stays the same as the base case. Fuel cost for Base case relates to conventional fossil fuels being used without any taxes, emission allowances etc.

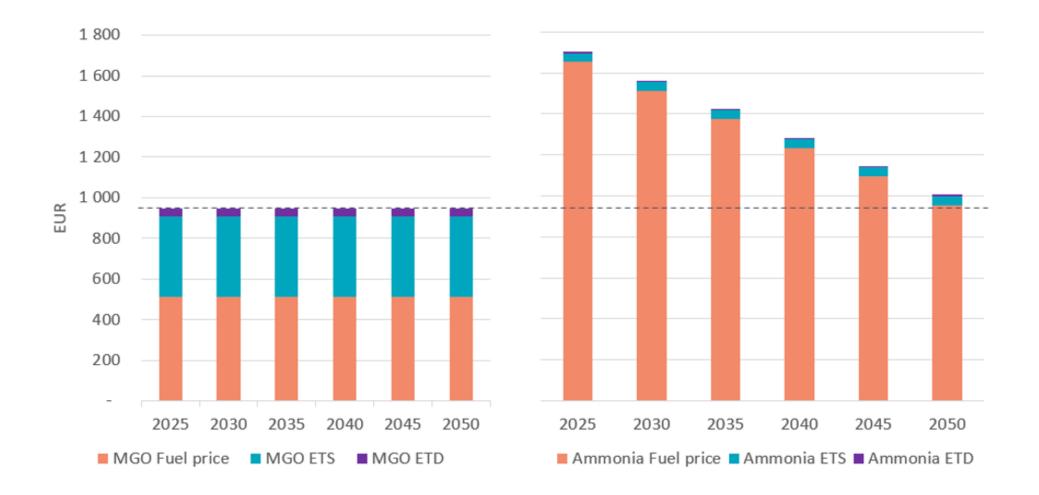


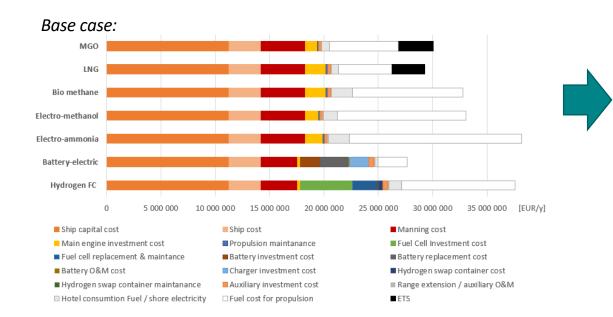
Figure 25. Example of cost structure development for fossil MGO and Ammonia. Calculated for 1-ton MGO ~ 12 MWh and for similar amount of energy content of renewable ammonia. Fuel price, Emission allowances (ETS) and Energy taxation (ETD) in EUR.

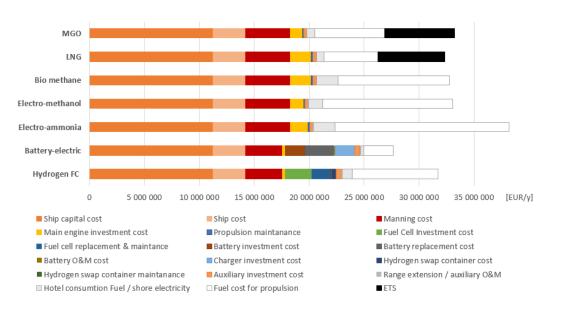
THANK

YOU

Any questions, please get in touch!

Linda Styhre


Researcher, PhD


IVL Swedish Environmental Research Institute Phone: +46-(0)72-727 9309 | linda.styhre@ivl.se

Karl Jivén

Researcher and project manager <u>IVL Swedish Environmental Research Institute</u> Phone: +46-(0)72-453 7152 | karl.jiven@ivl.se

Total annual cost of ownership for operating the six concept ships:

Sensitivity analysis assuming:

- 25% lower hydrogen cost than in the base case,
- halved fuel cell costs,
- 25% lower cost for maintenance of the fuel cells (including replacement),
- 200% higher costs for carbon emission allowances in the EU ETS

Roundtable discussion

- Each table elaborate on what has been presented related to the
 - 1. Which is the role of the ports in tomorrow's new energy landscape?
 - 2. How can ports in the Baltic Sea act to respond to the needs of the transport sector? What new innovations, collaborative models or other changes are needed?
- Each table have a moderator
- The moderator takes notes and prepares the presentation
- @10:10, the presentation from each group starts and we reflect jointly

RI. SE

Questions to discuss

Which is the role of the ports in tomorrow's new energy landscape?

How can ports in the Baltic Sea act to respond to the needs of the transport sector? What new innovations, collaborative models or other changes are needed?

Closing remarks

Ports must be empowered for their role in end-to-end chains

... enabling seamless and integrated performance for sustainable transports

What are the actions needed? in your perspectives

What action can you contribute to?

Who else is needed in the actions?

New partnerships 2an Mission Arena sessions