\mathbf{O} BLUE MISSION BANOS

Workshop: Solutions for circulation of nutrients:

Sea and Land Reducing nutrients in the Baltic Sea and inlands waters

THEME: Resource circulation/ Regeneration ocean and inland waters

in y #Arena2

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union

BLUE MISSION BANOS

Workshop: Solutions for circulation of nutrients: Sea and Land Reducing nutrients in the Baltic Sea and inlands waters? Theme: Nutrients flows in the Baltic Sea region – past and present Gun Rudquist, Head of Policy, Stockholm University Baltic Sea Centre, April 25th 2024 Research by: Eva Ehrnsten1,2, Bo Gustafsson 1, Erik Gustafsson 1, and Christoph

Humborg 1.

1. Stockholm University Baltic Sea Centre and 2. Universität Greifswald.

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union

The Baltic Sea today

...many eutrophication symptoms worse than ever!

Oxygen-depleted "dead bottoms" ■ O₂ < 2 ml l⁻¹ $O_2 = 0 \text{ ml } I^{-1}$

Bo Gustafsson, unpubl.

Baltic Sea eutrophication

Accelerating nutrient inputs 1950s – 1970s

- Population increase, urbanisation
- Intensification of agriculture, increased fertilizer consumption

1980s – today: reduction phase

- Measures to reduce nutrient loads across sectors
- Baltic Sea Action Plan (2007): Ambitious goals for nutrient load reductions

 \rightarrow N and P loads now back to levels of 1950s/1960s

_ _ _ _

Results

While the state has not improved...

Winter concentrations of dissolved inorganic nutrients in the Baltic Proper

Results

While the state has not improved...

... it would be considerably worse without human intervention to reduce nutrient loads

Winter concentrations of dissolved inorganic nutrients in the Baltic Proper

Results

While the state has not improved...

... it would be considerably worse without human intervention to reduce nutrient loads


```
44% larger anoxic area
```

Trends in Baltic Proper inputs HELCOM PLC assessment

Total phosphorus input trends

- Steady decrease
- Decrease in recent years dominated by few catchments

HELCOM (2023) Inputs of nutrients to the sub-basins (2020). HELCOM core indicator report. https://indicators.helcom.fi/indicator/inputs-of-nutrients/ TP BAP

Trends in Baltic Proper inputs HELCOM PLC assessment

Total nitrogen input trends

- No trend!
- Decrease in atmospheric deposition
- Increase in flow normalized river loads (dry

recent year with increasing TN concentrations)

HELCOM (2023) Inputs of nutrients to the sub-basins (2020). HELCOM core indicator report. https://indicators.helcom.fi/indicator/inputs-of-nutrients/ Stockholm University

Waterbourne load of phosphorous and nitrogen to the Baltic Sea

- Natural background
- Diffuse sources

- Sewage inland
- Sewage coastal

nland oastal

We can expect a gradual improvement with current nutrient inputs

Shaded area represent range of "natural" variability

Future challenges – global + regional socioeconomic development extremely important

Phosphorus inputs 2100 for different climate change and socioeconomic development scenarios

Drawn after: Pihlainen et al., 2020. Science of the Total Environment

SSP5

Concluding remarks

- Nutrient load reductions have been successful disaster avoided
- Most likely present day nutrient inputs will improve conditions with time
- Due to slow turnover time we do not see clear improvements yet
- Further load reductions are needed, unless we want to to wait for decades to see improvement
- New challenges may arise due to rapid climate change and political/economical development

Contact: gun.rudquist@su.se

Thank you!

Swedish Agency for Marine and Water Management O BLUE MISSION BANOS

Sediment as a resurse Business possibilities by circular use

Johan Persson LIFE SURE , Kalmar, Sweden

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union

Sediment as a resurse? Business possibillities by circular use

Building blocks, flood protection or building with nature?

We will present several innovative solutions for the use of sediment that can be of interest for stakeholders such as landowners, companies and authorities.

0

LIFE SURE

Sediment Uptake and Remediation on Ecological basis

The project has developed a cost-effective and ecologically sustainable way to absorb and recycle bottom sludge from shallow water areas affected by eutrophication. The test has been performed in the Malmfjärden bay at the city of Kalmar, Sweden.

Web page: <u>http://life-sure.eu</u>

Kalmar kommun

- Film about the project: https://youtu.be/77a0u9iQS24

LIFE SURE – Mudster robots

Funded by the European Union

Kalmar kommun

Funded by the European Union

Funded by the European Union

Possible benificial **USES** . Fertilizer,

Agriculture

- Soil improver

Construction

- Sound barriers
- Building blocks
- Pavement/parking blocks
- Landscape architecture
- Restore habitats (wetlands)
- Flood protection \bullet

Funded by the European Union

Fotos: top left: Kalmar municipality Others: Netics

One step closer to a circular economy

- Cleaner bays,
- Living ecosystems
- Minimize waste
- Cost- and energyefficient

Dredged sediment in growth substrate for plant cultivation

• Malmfjärden sediment characteristics

Clay [%]	70		
Silt [%]	20		
LOI [%]	13.5±1.0		
рН [-]	5,8		
P-tot [mg*kg ⁻¹]	1159 ± 111		
N-tot [mg*kg ⁻¹]	9488±1339		
Cd [mg*kg ⁻¹]	1.5 ± 0.4	0.5	reference values - "känslig markanvändning" (Swedish EPA ,2009)
Pb [mg*kg ⁻¹]	<u>58 ± 25</u>	50	
Zn [mg*kg ⁻¹]	220 ± 14	250	
As [mg*kg ^{-1]}	<u>10.8±1.8</u>	10	

Funded by the European Union

Dredged sediment in growth media for plant cultivation

Substrate composition \bullet

Physical structure

- Pore size distribution \bullet
 - \bullet
 - Aeration \bullet
 - \bullet

Materials

- Peat
- Bark compost
- Beach wrack
- **Biochar**

Hydraulic conductivity Water retention capacity

Dredged sediment in growth substrate for plant cultivation

Cultivation trial: greenhouse and pilot study •

Funded by the European Union

Dredged sediment in growth media for plant cultivation

- Cultivation trial: pilot study plant species •
- Sunflower
- Strawberry
- Red beet
- Lettuce
- Rocket \bullet
- Wheat ullet
- Rhy ullet
- Indian cress \bullet
- Squash ightarrow
- Carrot ullet
- etc ullet

Agriculture and land use: Growing experiments

O BLUE MISSION 2nd MISSION ARENA 25-26 April 2024 Riga, Latvia

BANOS

Lavendel trial 2023

Some of our partners, networks and other projects.

Low-flow dredging network

Linneuniversitetet

<u>repair/</u>

https://www.richwaters.se/varaprojekt/lagflodesmuddring-oljaren/

Kalmar kommun

https://www.pdjf.dk/en/program/ circular-phosphorus-recovery-

Want to learn more? Feel free to contact us!

Watch our film about the project: <u>https://youtu.be/77a0u9iQS24</u>

Please visit our website: <u>www.life-sure.eu</u> <u>Johan.persson2@kalmar.se</u>

Funded by the European Union

\bigcirc BLUE MISSION BANOS

Workshop: Solutions for circulation of nutrients: Sea and Land Reducing nutrients in the Baltic Sea and inlands waters?

Subtitle: Low flow dredging-circulation of nutrients

THEME:

in y #Arena2

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union

Low Flow dredging Lake Öljaren

LIFE IP Rich Waters

Jenny Herbertsson, Environmental strategist and water coordinator

LÄNSSTYRELSEN VÄSTRA GÖTALANDS LÄN Länsstyrelsen Norrbotten

Länsstyrelsen Västernorrland

Länsstyrelsen Kalmar län

Länsstyrelsen Västmanlands län

Five thematic areas LIFE IP Rich Waters

External loading

policyinstrument, horsefarms, stormwater

Internal loading

Lake Öljaren, mussel farming, aluminiumtreatment

The natural connections of water

- Fish migration barriers (conductivity), hydroelectric power

Pollutants

Coordinated measurements and measurement data, boat bottom cleaning

Waterplanning

- Policies and guidelines for the water district

Status Lake Öljaren and catchment area

- Northern Baltic Sea
- <u>Poor</u> status
- Runn of to lake Hjälmaren

Low flow dredging Lake Öljaren

 Subproject internal loading" Actions against internal phosphorus loading in lakes and coastal waters"

Background

Low Flow Dredging Öljaren

Low Flow Dredging Öljaren

Havs Vatten och myndigheten

The dredging device

Foto: Johan Hammar

Dewatering geobag

Reject water and sediments

Emptying of the geobag

Analysis of sediments

► <u>B</u>	KOMMISSIONENS FÖRORDNING (EG) nr 889	2008							
	av den 5 september 2008								
om tillämpningsföreskrifter för rådets förordning (EG) nr 834/2007 om ekologisk produktion och									
markning av ekologiska produkter med avseende på ekologisk produktion, markning och kontroll									
	(201 2 200, 10.9.2000, 5. 1)								
ndrad	genom:								
		Officiella tidningen							
		nr	sida	datum					
MI	Kommissionens förordning (EG) nr 1254/2008 av den 15 december 2008	L 337	80	16.12.2008					
M2	Kommissionens förordning (EG) nr 710/2009 av den 5 augusti 2009	L 204	15	6.8.2009					
M3	Kommissionens förordning (EU) nr 271/2010 av den 24 mars 2010	L 84	19	31.3.2010					
<u>M4</u>	Kommissionens genomförandeförordning (EU) nr 344/2011 av den 8 april 2011	L 96	15	9.4.2011					
M5	Kommissionens genomförandeförordning (EU) nr 426/2011 av den 2 maj 2011	L 113	1	3.5.2011					
M6	Kommissionens genomförandeförordning (EU) nr 126/2012 av den 14 februari 2012	L 41	5	15.2.2012					
<u>M7</u>	Kommissionens genomförandeförordning (EU) nr 203/2012 av den 8 mars 2012	L 71	42	9.3.2012					
MS	Kommissionens genomförandeförordning (EU) nr 505/2012 av den 14 juni 2012	L 154	12	15.6.2012					
- <u>M9</u>	Kommissionens genomförandeförordning (EU) nr 392/2013 av den 29 april 2013	L 118	5	30.4.2013					
- M10	Kommissionens förordning (EU) nr 519/2013 av den 21 februari 2013	L 158	74	10.6.2013					
<u>M11</u>	Kommissionens genomförandeförordning (EU) nr 1030/2013 av den 24 oktober 2013	L 283	15	25.10.2013					
<u>M12</u>	Kommissionens genomförandeförordning (EU) nr 1364/2013 av den 17 december 2013	L 343	29	19.12.2013					
<u>M13</u>	Kommissionens genomförandeförordning (EU) nr 354/2014 av den 8 april 2014	L 106	7	9.4.2014					
M14	Kommissionens genomförandeförordning (EU) nr 836/2014 av den 31 juli 2014	L 230	10	1.8.2014					
M15	Kommissionens genomförandeförordning (EU) nr 1358/2014 av den 18 december 2014	L 365	97	19.12.2014					
<u>M16</u>	Kommissionens genomförandeförordning (EU) 2016/673 av den 29 april 2016	L 116	8	30.4.2016					
M17	Kommissionens genomförandeförordning (EU) 2016/1842 av den 14 oktober 2016	L 282	19	19.10.2016					
M18	Kommissionens genomförandeförordning (EU) 2017/838 av den 17 maj 2017	L 125	5	18.5.2017					

В	Organiskt rikt sediment från sötvatten som bildats under syrefria betingelser	Endast organiska sediment som är utvunna som biprodukter från verksamhet i sötvatten eller utvunna från tidigare sötvattensområden.
	(t.ex. sapropel)	I tillämpliga fall bör utvinning ske på ett sätt som orsakar minsta möjliga påverkan på vattenmiljön.
		Endast sediment från källor som är fria från föroreningar av bekämpningsmedel, lång- livade organiska föroreningar och bensin- liknande ämnen.
		Högsta tillåtna koncentration i mg/kg torrvikt: Kadmium: 0,7, koppar: 70, nickel: 25, bly: 45, zink: 200, kvicksilver: 0,4, krom (totalt): 70, krom (VI): ej påvisbart.

Sediment dispersion

Funding of the project

- EU- contribution and municipality of Katrineholm ~ 4,8 millions sek
- LOVA contribution 765 000 sek + 3,3 millions sek
- Swedish Agency for Marine and Water Management, funding 5 millions sek
- BASAP Fund, foundation €200 000

Havs Vatten myndigheten

Thank you for listening

Jenny Herbertsson

jenny.herbertsson@katrineholm.se

O BLUE MISSION BANOS

Workshop: Circulation of nutrients

Subtitle: Resource circulation of reed

THEME: Baltic Reed /Ulla Rosenström

in 🎔 #Arena2

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union

BalticReed

Baltic Sea Coastal Nutrient Management with Reed

Aim: To improve the state of the Baltic Sea coastal waters by developing sustainable reed-based production chains

Duration: 5/2023 – 4/2026 Budget: Approx. 3 MEUR (2.992) Co-financing: EU Interreg Central Baltic Programm Location: Finland, Sweden, Åland Islands

Interreg

Co-funded by the European Union

Central Baltic Programme

BalticReed

Background

- Reed retains significant amount of nutrients: One hectare of dense reed contains 5-10 kg of phosphorus(P) and 80-100 kg of nitrogen(N).
- Harvest, collection and re-use of reed results in two benefits: Uptake of nutrients and improving the coastal habitats which benefits the biodiversity.
- Reed is an excellent biomaterial that has also been used historically for several purposes

Funded by the European Union

Co-funded by the European Union

Central Baltic Programme

BalticReed

Nutrient removal by sustainable use of reed beds

WP Nutrient removal & coastal restoration

Pilot activities

- Nutrient reductions from coastal bays by harvesting (n=12)
- Improved coastal habitats

Awareness raising

• Increasing knowledge on the need of coastal water protection (guidelines for sustainable harvesting)

WP Sustainable solutions for reed-based value chains

Sustainable use of reed beds:

- Solutions for developing legislation, permitting and multi-purpose planning Viable value chains:
- Reed-based products, novel solutions and innovations
- Knowledge exchange and learning

BalticReed From shore to store

Interreg

Co-funded by the European Union

Central Baltic Programme

BalticReed

Value Chain development

Bottlenecks identified:

Harvest

- techniques & equipment ineffective \rightarrow harvesting expensive •
- several harvesting techniques required (land vs. water harvest; winter vs. summer harvest

Logistics

- reed grows in inaccessible areas and is scattered
- reed is bulky and often a "fresh produce"
- communication problematic as many players involved and weather dependent

Consistency

• limitations in harvest season (due to weather and wildlife) \rightarrow affects availability Willingness to pay

- cheap/free biomaterials are available (eg. for biogas, biochar, and soil)
- requires investments

Efficiency across all components of the chain should be optimized, with seamless communication among all parties

Co-funded by the European Unio

Central Baltic Programme

BalticReed

Assessing the role of shellfish farming in nutrient and carbon capture

Jonne Kotta, University of Tartu

in 🎔 #Arena2

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union

HUMAN ACTIVITIES HAVE IMPACTS

Human induced pressures become more intense and diverse and result in the loss of habitats

Low-trophic aquaculture

Economic benefit Environmental healing (extracting legacy nutrients and capturing carbon)

Do the low salinity and cold water of the Baltic Sea favour shellfish farming? How can it help counteract the negative effects of eutrophication and climate change?

EU MISSIONS CENTRESTORE OUR OCEAN & WATERS

0 BLUE **2nd MISSION ARENA** 25-26 April 2024 Riga, Latvia

Modelling biomass growth

Baltic Blue Growth

Baltic Muppets

dynamic models

explore processes

predict multiple outcomes (biomass, NPC fluxes)

Baltic MUPPETS

Modelling biomass growth (regional) Baltic Muppets

Baltic Blue Growth

BLUE MISSION BANOS 25-26 April 2024 Riga, Latvia

Baltic MUPPETS

0

Modelling biomass growth + NPC capture (regional)

O BLUE MISSION BANOS 25-26 April 2024 Riga, Latvia

Modelling biomass growth + NPC capture (farm)

0.5 ha low salinity farm Nutrient flows (kg) in one harvest cycle

Assessing the effectiveness of mussel farms in capturing nutrients from fish farms

1 ha low salinity mussel farm

Fish farm with an annual production capacity of 200 tons.

Modelling carrying capacity Maximising space: The optimal number of mussel farms per square kilometre

host model for 3D Hydrodynamics: - sea level, S, T, u,v, w, ice - wind/bottom stress, diffusivity - meteo input

Linking 3D hydrodynamics with biological process modelling (e.g. dynamic energy budget models)

Baltic MUPPETS

Operational Decision Support System (ODSS) in action

Display and analysis of different map layers

Baltic MUPPETS

Operational Decision Support System (ODSS) in action

Calculation of farm yields and associated ecosystem services

			r de		
	Physical features				×
	Name	Average	Area (km2)	Percent (%)	Classes
	Sediments				Hard bottom complex,Sand
A CONTRACT OF	Average surface chlorophyll (mg m-3)	2.12			
	Average bottom salinity	6.75			
	Simplified wave model (m2 s-2)	281140.86			
	Average surface temperature (°C)	8.53			
	Baltic Sea Ice maximum		133.2	100	
	Average sea ice cover		133.19	100	
	Human activities			×	Nutrient removal
	Name Averag	je Area (km2) Percent (%) Count	Name
	Dredging	0	0	0	N Removal by mussels (Myt
	Windpark	0	0	0	P Removal by mussels (Myti
	Fish farming	0	0	0	Mussel growth (kg/m rope (
	Shipping 163.45	126.7	95.12	63	Fucus growth (growth rate i
Ventspils	Underwater cables	0	0	0	Ulva growth (growth rate in
	Pelagic trawling	0	0	0	Areal N removal estimate by
, Vents Nova	Benthic trawling	0	0	0	Areal P removal estimate by
	Harbours	0	0	0	Areal N removal estimate by
	Mussel and algal cultivation	0	0 Engin	0	Areal P removal estimate by
	Coastal defence	0	0	0	Saccharina growth (growth
	Extraction of minerals	0	0	0	Areal N removal estimate by
i son	Marine plant harvesting	0	0	0	Areal P removal estimate by
the second s	Tourism and leisure activities	0 Kandavi	0	0	
P19	K- 77		3	139 m Tukums	Kerneri
Ki Andrewski	uldīgas lovads	Dimus	uma rads	1	National Park Mārupe: Novads

2nd MISSION A 25-26 April 2024| Riga, Latvia

0

Baltic Muppet tool for farm upscaling

Baltic Muppet tool for ecosystem services mapping

Environmental conditions

DEB + 3D hydrodynamics

Nutrient and carbon flows

O BLUE MISSION BANOS

Workshop: Solutions for circulation of nutrients

Subtitle: Resource circualtion – algae and cyanobacteria: the case of the EU project "AlgaeService for LIFE"

Jūratė Karosienė, Judita Koreivienė, Nature Research Center, Vilnius, Lithuania

THEME: Resource Circulation

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union

Resource circulation algae and cyanobacteria

The EU project "Algae – economy based ecological service of aquatic ecosystems"

Acronym: AlgaeService for LIFE

Project No: LIFE17 ENV/LT/000407

Project duration: 01/08/2018 - 30/11/2023

Coordinating Beneficiary:

Associated Beneficiaries:

Co-Financed by:

Ministry of Environment Republic of i ithuania

AlgaeService for LIFE

The project aimed to promote best practices in ecological services and the circular economy approach by implementing an innovative complex system.

Objectives

- potentially valuable products
- issues

• To demonstrate integrated management of nutrients and algal blooms through the harvesting of macroalgae mats and cyanobacteria scums

To test and demonstrate the redesigning of harvested biomass into

To raise **awareness** to environmental, water quality and health hazard
Eutrophication

The main problem of the Baltic Sea in the whole region is eutrophication with all its consequences. Eutrophication has affected about 97% of the Baltic sea area.

Cyanobacteria bloom in the Baltic Sea, 2005.

Satellite image from NASA' s Terra satellite, MODIS instrument.

Cyanobacteria and algae as biological filters

Cyanobacteria blooms

Kaunas Reservoir, September 2020

River Jūra, August 2019

Macroalgae agglomerations

Prototypes

for algae and cyanobacteria biomass harvesting

Baltic 🖉 Environment

Characteristics	•	AS-S	AS-L
Target biomass	\oplus	Macroalgae, cyanobacteria	Cyanobacteria
Type of water	Ø	Rivers, lakes and ponds	Large lakes, reservoirs, lagoons
Mobility		Towing a car (SUV) on a trailer	Special trailer with manipulator
Size and other specifities	\leftrightarrow	Length - 4 m, width - 2.45 m, height - 2.2 m, weight - 1.5 t	Length - 9 m, max width - 4.8 m, height - 3.8 m, weight - 4 t
Area of filtration mesh		For cyanobacteria - 3.38 m²	13.52 m ²
Filtration rate of water		For cyanobacteria - 1.07 m³/h	4.27 m³/h
Efficiency	(C)	Up to 2000 kg/h wet macroalgae biomass 30-80 l/h wet weight of cyanobacteria	120-350 l/h wet weight
Biomass density		Up to 4% dry weight of cyanobacteria	Up to 4% dry weight
Collected amount of wet biomass		60 t wet weight of macroalgae 1 t wet weight of cyanobacteria	8 t wet weight

e * 4

Prototypes

for algae and cyanobacteria biomass harvesting

Baltic 🖉 Environment

Characteristics	•	AS-S	AS-L
Target biomass	\oplus	Macroalgae, cyanobacteria	Cyanobacteria
Type of water	Ø	Rivers, lakes and ponds	Large lakes, reservoirs, lagoons
Mobility		Towing a car (SUV) on a trailer	Special trailer with manipulator
Size and other specifities	\leftrightarrow	Length - 4 m, width - 2.45 m, height - 2.2 m, weight - 1.5 t	Length - 9 m, max width - 4.8 m, height - 3.8 m, weight - 4 t
Area of filtration mesh		For cyanobacteria - 3.38 m²	13.52 m²
Filtration rate of water		For cyanobacteria - 1.07 m³/h	4.27 m³/h
Efficiency	(C)	Up to 2000 kg/h wet macroalgae biomass 30-80 l/h wet weight of cyanobacteria	120-350 l/h wet weight
Biomass density		Up to 4% dry weight of cyanobacteria	Up to 4% dry weight
Collected amount of wet biomass		60 t wet weight of macroalgae 1 t wet weight of cyanobacteria	8 t wet weight

Alqae Service for Life

AS-LAND

Cyanobacterial scums near shore

Lakes, ponds, littoral zone

Easily transportable on trailer

Two parts: Floating collecting device: 1.3×1.7 m Concentrating on-land device: 4.6×1 m²

4 m²

1.2-10.9 m³/h (depends on the concentration in water body)

Up to 136 kg/h wet weight

Up to 5.8 (average 4.8) % of dry weight

4.14 t wet weight

Biomass collected

Cyanobacteria harvesting

Funded by the European Union

Macroalgae harvesting

Macroalgae 95.44 tons

Low value products

Fertilizers

Macroalgal biomass as an organic slow-release fertilizers was tested.

Chemical composition of Cladophora glomerata (% in dry biomass).

Biogas

- 35.6 t of macroalgae and 9 t of cyanobacteria wet biomass were used for biogas production.
- 832 m³ of biogas was produced.
- 4925 kWh of energy was produced with a methane concentration of 65-75% and a yield of 0.58-0.80 m³/d/m³ of substrate.

Macroalgal aqueous extracts (5% and 25% concentration) had a positive effect on germination of tomatoes, basil, spring wheat and cucumber seeds. The extracts have no effect or even negative for peas seeds.

Variously prepared macroalgal biomass, applicated into light-textured soil as a fertilizer, increased the yield of cereals and storage plants by 47-104%. The application of biomass for fertilization in spring was 50% more effective.

Fertilizer obtained by adding macroalgae biomass to manure was highly successful in enhancing potatoe crops yields, up to around 80% compared to control.

The installed photobiofilter for biogas upgrading:

- increase of methane
 reduse CO₂ by 8-15% concentration by 5-8% and H₂S by 12-40%.

Algae Service for

Low value products

Fertilizers

Macroalgal biomass as an organic slow-release fertilizers was tested.

Chemical composition of Cladophora glomerata (% in dry biomass).

Biogas

- 35.6 t of macroalgae and 9 t of cyanobacteria wet biomass were used for biogas production.
- 832 m³ of biogas was produced.
- 4925 kWh of energy was produced with a methane concentration of 65-75% and a yield of 0.58-0.80 m³/d/m³ of substrate.

Macroalgal aqueous extracts (5% and 25% concentration) had a positive effect on germination of tomatoes, basil, spring wheat and cucumber seeds. The extracts have no effect or even negative for peas seeds.

Variously prepared macroalgal biomass, applicated into light-textured soil as a fertilizer, increased the yield of cereals and storage plants by 47-104%. The application of biomass for fertilization in spring was 50% more effective.

Fertilizer obtained by adding macroalgae biomass to manure was highly successful in enhancing potatoe crops yields, up to around 80% compared to control.

The installed photobiofilter for biogas upgrading:

- increase of methane concentration by 5-8%
 - reduse CO₂ by 8-15% and H₂S by 12-40%.

Funded by the European Union

Innovative feed products

- for rabits

- for fishes

ECO-AQUA-RECYCLE

2021-2023 (applied for EU patent)

High value products

Cyanobacteria non-toxic biomass for blue-coloured pigment

Was extracted and purified from wild non-toxic cyanobacteria biomass collected from the Kaunas reservoir.

Phycocianin extraction from cyanobacteria

Precipitation with amonium sulfate

Ultrafiltration and purification using gel filtration or ion exchange chromatography

Macroalgae Cladophora glomerata biomass for cosmetic

Macroalgae raw material is first cleaned, de-encrusted and crushed before extraction

Extracts for cosmetic

STEP BY STEP | From raw macroalgae to high value cosmetic products:

Solvent extraction, followed by low-pressure evaporation isolates the active compounds

Phycocyanin

Freeze-dryed phycocyanin powder

The method for extraction and purification of phycocyanin was optimised. Phycocyanin purity varied from food grade used for food and cosmetic to analytic grade.

A suitable emulsion base is developed, which will complement the macroalgae extract

The final cosmetic product undergoes stability, purity and consumer-based testing

Macroalgae value chain

PRODUCTS

Detection hot spots of agglomerations & evaluation of the biomass using UAV

Harvesting of biomass using AS-S Biogas Digestate as fertilizers Biomass as fertilizers

Extracts for natural cosmetics

Feed additives

Cellulose production

STAKEHOLDERS

Small ecological farms get energy and fertilizers to increase sustainability: save money by producing self energy, improve the soil quality and crop yield.

Companies seeking replacing chemical compounds by natural products in cosmetics.

Companies producing feed for various types of animals to obtain better quality product and keep animals healthy from diseases.

Alqae Service

for ıfe

Cyanobacteria biomass has strict regulation of biomass

Fertilizers for energetic plants

Anti-skin cancer gel

Medical Academy

Thank you for the attention!

The content of this presentation does not reflect the official opinion of the European Union. Responsibility for the information and view expressed therein lies entirely with the authors.

Alqae Service for Life

 \bigcirc BLUE MISSION BANOS

Workshop: Resource circulation - seawheat

Karina Balina/ Researcher at Circularity Transitions **Research Group or Scientific Communication Coordinator** at SeaWheat COST Action.

in y #Arena2

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union 0 BLUE 2nd MISSION ARENA 25-26 April 2024 Riga, Latvia

SeaWheat

COST Action CA20106 ULVA: TOMORROW'S "WHEAT OF THE SEA", A MODEL FOR AN INNOVATIVE MARICULTURE **PhD Karina Balina** Scientific Communication Coordinator

Funded by the European Union

O BLUE MISSION 2nd MISSION ARENA 25-26 April 2024 Riga, Latvia BANOS

BIOLOGY Dr. Ronan Sulpice

AQUACULTURE Dr. Rui Pereira

BIOACTIVE PRODUCTS Dr. Thomas Wichard

ECOSYSTEM SERVICES Dr. Annette Bruhn

FOOD, FEED AND BIOMATERIALS Dr. Sylvia Strauss

SOCIAL, LEGAL AND **REGULATORY ASPECTS** Dr. Celine Rebours

The main goals SEAWHEAT of the COST Action

- make a step-change towards a green economy based on Ulva mass production and utilization within the European community and beyond,
- development of Ulva-based blue-biotech industries and utilization of Ulva as a model organism in European algaculture,
- introducing the traditional European diet and taste with Ulva, as a new, sustainable and safe food item.

Funded by the European Union

Progress of SEAWHEAT

- Involved over 300 participants, 30 countries
- More than 20 SMEs
- Ongoing work on several reviews
- Starting EU level Ulva sampling and analysing (genome, compositition, microbiome)
- SME survey
- Policy analyses both national and EU level
- Training Schools, Conferences, WorkShops, STSMs

Lunch

with

Ulua

Lunch with Ulva 2024

25th Ap 30th Mo 27th June 25th July 26th Septem 24th Octob

25th April - Erik Malta

- 30th May Anna Fricke
- 27th June Olivier De Clerck
 - 25th July Ronan Sulpice
- 26th September Annette Bruhn
 - 24th October Stefan Kraan

Register Now!

WORKSHOP "BIOACTIVES IN ULVA"

24TH - 25TH JUNE, 2024

START AT 9.30 AM

L)

UNIVERSITY OF AVEIRO, PORTUGAL

APPLICATION DEADLINE 28TH APRIL

Register Now

Funded by the European Union

SeaWheat

COST Action CA20106 TOMORROW'S 'WHEAT OF THE SEA': ULVA, A MODEL FOR AN INNOVATIVE MARICULTURE

seawheat@univ.haifa.ac.il

Karīna Bāliņa karina.balina@lu.lv

Thanks for listening Now time for discussions

2nd MISSION ARENA 25-26 April 2024 | Riga, Latvia

Funded by the European Union

Slide Title

Slide Content

